
ECS 235A Fall 2021, December 7th, 2021, Davis, Ca Frolikov, et al.

The Canary In The Coal Mine:
Implementing Web Based Canaries and other HoneyTokens

Pavel S Frolikov
Frolikov@ucdavis.edu

University of California Davis
Davis, California

Matthew Scates
msscates@ucdavis.edu

University of California Davis
Davis, California

Michael Yang
mzxyang@ucdavis.edu

University of California Davis
Davis, California

ABSTRACT
The growing number and significance of web applications have led
to the growth in attacks against networks, which imposes great
vulnerability to information security. Therefore, more aggressive
forms of defense techniques to supplement the existing security
approaches have been brought to the table. One of these tech-
niques, the Honey Token, involves the use of deception to collect
information about attacks. A Honey Token is a security deception
technique that leaves data intentionally to be probed, attacked, or
compromised by attackers to collect information from the source
of attackers.

KEYWORDS
HoneyPot, HoneyToken, Web-Canaries, Computer Security, Secu-
rity Design

1 INTRODUCTION
The UC Davis website often has hackers trying to break into the site
for various reasons, and often we don’t know who these hackers
are. As a result, we are going to help identify those hackers by
implementing an array of different Honey Tokens. Honey Tokens
are the fictitious records used to deceive attackers. In this project,
we implement multiple different approaches to Honey Tokens de-
signed to lure hackers. Table 1, contains the types of Honey Tokens
implemented in this project, and a brief description.

1.1 Why Honey Tokens?
Honey Tokens are ideal for all because,

(1) easy to implement
(2) require little resources
(3) require little maintenance
(4) provide an accurate data set

Thanks to the simplicity, accuracy, and strength of Honey Tokens,
they are especially useful for smaller organizations that do not have
many resources to delegate to web security. As seen in Figures 1
and 2 we used two web pages from the UC Davis site, making the
visual implementation simple, cheap (since it was already done),
and quick. After we added a few Honey Tokens we are now able
to get very accurate data points from people of interest (attackers
trying to break into the system). Honey Tokens are also good at
catching hackers without risk to the main system because they are
separate from the main system, yet look like they are part of the
main system. Thus any "damage" to the Honey Token will not affect
the main system.

Figure 1: Deceptive CAS Login Screen

Figure 2: Deceptive Graduate Admissions Login Screen

2 BACKGROUND
Prior to this project, none of us have heard of Honey Tokens, so
before we could begin our development we needed to understand
why they’re useful, how one might go about implementing them,
and just answer general questions about the topic.

2.1 Prior Research
To start, we as a group read a handful of academic papers and pro-
fessional blogs on the different implementations of Honey Tokens.
There were a few lectures on Honey Tokens, the most useful lec-
ture came from MMY a Russian university, during the lecture the
speaker clearly explained the benefits of why Honey Tokens are a
powerful tool that should not be overlooked. as shown in table 2.

“The hypothesis that honey technologies are not widely de-
ployed in production systems turned out to be correct. Of those
surveyed, only 25% had honeypots, 9% had honeynets, and 15% had



The Canary In The Coal Mine: ECS 235A Fall 2021, December 7th, 2021, Davis, Ca

Table 1: Honey Tokens Implemented

Description

Canary-based Parameters A canary-based approach to a deceptive web page
designed to lure hackers into attacking what is
known as a deceptive Honey Token

The objective of this Honey Token is to trick hack-
ers into thinking UC Davis has a vulnerable site.
by putting web attributes such as debug and ad-
min in the URL publicly rather than secretly.

Robots.txt Adding deceptive links to the Robots.txt file, to
check for malicious web crawlers.

Our Honey Tokens redirected to a real web page,
so the attacker would not know that they were
being tracked.

Storing on the file system Storing access tokens on files in the web server’s
file system

If the access token gets entered we record the
incident.

SQL Injection To detect hackers trying to exploit an SQL vulner-
ability, we log users who add in ’ OR 1=1 into the
password field.

This tricks vulnerable code that uses SQL into
accepting 1=1 rather than the password.

Bogus Login Information Added dummy admin account login information If login with credentials attempted, the incident
gets recorded.

What How
Defense Learn from the adversary and Adapt

Lay Traps to catch subtle yet abnormal activities
Research Understand how attackers think what works

what doesn’t, and what they’re after
Table 2: Honey Token use cases[8]

honeytokens.”[10]
This is a really interesting finding from a Ukrainian Cybersecurity
study. Despite the fact that Honey Tokens, or even honeypots, have
many advantages, such as simplicity, little overhead, and accurate
and precise data sets. Security teams seem to not use them at all.
Luckily UC Davis already has a small honeypot set up, and it would
be quite beneficial to add more simple security measures.

2.2 Zones
Honey Tokens can be implemented on many parts of the system.
Each "Zone" represents a different part of the full Website. Placing
Honey Tokens in the following Zones allows us to get a better
understanding of how adversaries attempt to break into our system.
[5]

2.2.1 Zone 1, The Web Server. Honey Tokens on the Web Server in-
volve strategically placing sensitive information on the File System,
letting us know where attackers are attempting to gain unautho-
rized access from. Some examples include

• text documents with access tokens
• Robots.txt

2.2.2 Zone 2, The Web Application. Canary based Honey Tokens
(Section 3.2) are a perfect example of a Web Application defense.

2.2.3 Zone 3, The Database Server. Placing Honey Tokens in the
Database Server allows us to defend and identify weaknesses in the
database that adversaries will attempt to exploit.

2.3 web2py
Web2py is a full-stack python based web framework, where we
just need the basic skills to do our development. Our web pages
are ripped straight out of the UC Davis web-page: the CAS login
screen, and graduate admissions login portals. We decided on these
pages as they would most likely be places of interest for attackers.

2.4 DETERLab
DETERLab is a security and education-enhanced version of Emulab,
a shared testbed providing a platform for research in cyber-security
and serving a broad user community, including academia, industry,
and government. [9] Before we hosted our project on PythonAny-
where and the Security office’s servers, we used DETERLab to test
our early prototypes and ideas for the project.

2.5 PythonAnywhere
After we did our initial testing on DETERLab, wemoved onto Pytho-
nAnywhere for the remainder of our development and deployment,
which is a web-host designed for web2py (and other server-based
python interfaces such as bottle and py4web), this streamlined our
development and allowed for rapid (re)deployment.

2.6 Campus Information Security Office
This project was actually suggested by the Campus Information
Security office, and they helped us along the way. Jeff suggested
that we use DETERLab for our initial testing, and he also spun up
a Linux server for us to use. Thank you!

2.7 Struggles along the way
During the development of this project, we ran into a number of
unexpected hurdles.

2.7.1 py4web. Initially, instead of using web2py, we wanted to
use py4web for the web framework. This is a newer evolution of
web2py, but it’s more feature-rich than we needed and not as stable.
When we first set up our environment in Deter, we quickly ran into
many issues with py4web and collectively decided that it would be



ECS 235A Fall 2021, December 7th, 2021, Davis, Ca Frolikov, et al.

best for us to pivot to web2py as it has all of the features that we
need, and just works.

2.7.2 cURL. When looking into the different approaches that hack-
ers use when looking for vulnerabilities, there was quickly one tool
that stood out.
cURL
This is a very powerful command-line utility that allows for trans-
ferring data over URLs. When we first implemented our logging
utility, we assumed that everyone would be accessing the web
server via a browser with a GUI.
We quickly learned that this is not the case. The logging tool that
we developed did not work whenever someone tried to access the
website via cURL- it would actually crash the entire server. So, we
had to account for cases when the user is accessing our website via
cURL or any other similar command-line tools.

2.7.3 Apache. After the bulk of our development was complete,
and we have already tested our initial builds on DETERLab and
PythonAnywhere, the Campus Information Security Office spun
up a Linux server for us. One major hurdle that we encountered
during the setup of a web server was Apache. We didn’t have to deal
with it with PythonAnywhere because they have a streamlined,
basically, one-click setup to publish a web application. Herewith a
bare-bones Linux server we ran into tons of issues, all coming back
to Apache not cooperating with us. Luckily, eventually after over
15 hours of playing around with configs, re-installations we got it
working.

3 METHODOLOGY AND IMPLEMENTATION
Throughout the course of the project, we have been working in
contact with the ISO to help us deploy our deceptive website. Our
project contains two main web pages: the main UC Davis CAS
login page, and the graduate admissions login page. We picked
these login pages because they were simple to duplicate, many
people in UC Davis go to these pages, and they would be a high
priority for hackers.

3.1 Logging
The entire purpose of these Honey Tokens is so we can log these
incidents. Whenever one of our Honey Tokens gets triggered, we
record all of the following information into a database table as seen
in figure 3

• Incident ID
• Page the incident occurred on, and updated value if applica-
ble

• IP Address
• TimeStamp GMT
• Operating System
• Platform
• Scraper (boolean)
• Tablet (boolean)
• Mobile (boolean)
• Browser

Figure 3: Example of log Database Table

Figure 4: Visual example of the canary being changed, ani-
mated here: https://imgur.com/JOxCOfD

3.2 Canary-based Parameters
One of our first Honey Token implementations was canary-based.
These are parameters that should not ever be changed by the client,
so when the values are updated, there is a high likelihood that
someone with malicious intent is in our system. If the correct con-
ditions are met we will log the incident. We use enticing names
such as debug and admin to lure in hackers. If the parameters were
something along the lines of ?lang=en, there wouldn’t be much of
a reason for adversaries to play around with them. The canary in
figure 4 is admin=false. This is a Zone 2 Honey Token.

This parameter based canary is used in coordination with other
Honey Tokens we set up in our system (3.4 and 3.6)

3.3 Robots.txt
The Robots.txt file (Zone 1 Honey Token) at the root of websites,
is commonly used for indexing websites using web spiders. Often,
attackers will try to use the Robots.txt file to their advantage to
find places that they should not have access to.

• Disallow: /private
• Disallow: /debug

Our Robots.txt entry has two traps in it.
There is no legitimate way to access /private and /debug.

3.3.1 private. When an adversary would go to /private will log
the incident, and redirect them to the CAS login screen, to make
them believe that nothing happened.

3.3.2 debug. The /debug route will redirect you to an access string.
See 3.4

https://imgur.com/JOxCOfD


The Canary In The Coal Mine: ECS 235A Fall 2021, December 7th, 2021, Davis, Ca

Figure 5: "Debug Mode enabled with Access token"

3.4 Storing on the file system
Earlier in 3.2 we discussed the different parameters that we imple-
mented, ?debug= is one of them. When an adversary enters the
access token (discussed in 3.3) into this parameter, they will be in
"debug mode" as seen in figure 5. This of course is not actually a
debug mode, simply a red herring. (Zone 1)

3.5 SQL Injection
One common approach for adversaries to gain access to systems
is by attempting an SQL Injection on vulnerable parts of websites.
This Honey Token (Zone 3) was more of a proof of concept, as
we only are checking for some of the more common Injection
techniques. Such as setting the password field to "’ OR 1=1". If we
detect someone attempting an SQL Injection to gain unauthorized
access, we log the incident.
In future implementations we would have liked to flesh out this
Honey Token more, as SQL Injections are a staple.

3.6 Bogus Login Information
The last Honey Token (Zone 3) that we implemented in our sys-
tem is storing dummy admin login information in the /adminmode
route. The adversary could get to this route by setting the (Section
3.2) ?admin= parameter to true. This will display an "Admin Mode"
button on the Web Page that would redirect the user to an adminis-
trative panel.
On that panel is a downloadable CSV file that contains the login
information for an admin account. When an adversary downloads
this CSV file, the incident would be reported. When an adversary
would attempt to log in using the information on the CSV file, this
would also be reported.

4 OUTCOMES
Our Honey Tokens are an effective approach to catching and de-
ceiving potential attacks due to the specific criteria it is targeting
during the attacking process. The main objective for this project
was the implementation and deployment, which we did successfully
accomplish.

4.1 Future Work
In the future, we will give our honeypot more deployment time
to catch potential attacks and perform data analysis based on the
collected attackers’ information. For example, we want to compare
the Honey Tokens in our honeypot with each other to see which
ones get used by attackers more than others. In addition, we will
also investigate and implement other Honey Token methods. As
said in Section 3.5, we would also like to revisit our SQL Injection
Honey Token and implement a more robust solution.

ACKNOWLEDGMENTS
Special thanks to the UC Davis Information Security Office for sug-
gesting a testbed, and spinning up a server for us!

A INSTRUCTIONS FOR RUNNING (LOCALLY
MACOS)

(1) Unzip Web2py.zip
(2) cd to the web2py root directory
(3) sudo python web2py.py as seen in figure 6
(4) Keep Server IP checked at Local IPv4 (127.0.0.1)
(5) Pick an available Server Port
(6) Pick an Admin Password, "1" is recommended for simplicity
(7) You will be redirected to http://127.0.0.1:PORT/cas
(8) To access the logs, go to (If asked to log in use the Admin Pass-

word that you selected) http://127.0.0.1:PORT/s/appadmin/
select/db?query=db.logTable.id>0

(9) THIS SHOULD ALSO WORK FOR LINUX SYSTEMS. BUT
MAC RECOMMENDED

Figure 6: command line

(1) Important Links
(2) CAS Page http://127.0.0.1:PORT/cas
(3) Graduate Admissions Login Page http://127.0.0.1:PORT/adm
(4) robots.txt http://127.0.0.1:PORT/robots.txt
(5) where to see logs http://127.0.0.1:PORT/s/appadmin/select/

db?query=db.logTable.id>0
WINDOWS

(1) CODE has been tested on MacOS.
(2) for windows. download the binaries at http://web2py.com/

init/default/download
(3) from web2py.zip place the folder /s/ which is located in

web2py/applications into the applications (web2py/applications/)
folder of the windows binaries directory

(4) AND place routes.py from web2py.zip into the main web2py
folder (web2py/) in the windows binaries directory

http://127.0.0.1:PORT/cas
http://127.0.0.1:PORT/s/appadmin/select/db?query=db.logTable.id>0
http://127.0.0.1:PORT/s/appadmin/select/db?query=db.logTable.id>0
http://127.0.0.1:PORT/cas
http://127.0.0.1:PORT/adm
http://127.0.0.1:PORT/robots.txt
http://127.0.0.1:PORT/s/appadmin/select/db?query=db.logTable.id>0
http://127.0.0.1:PORT/s/appadmin/select/db?query=db.logTable.id>0
http://web2py.com/init/default/download
http://web2py.com/init/default/download


ECS 235A Fall 2021, December 7th, 2021, Davis, Ca Frolikov, et al.

Figure 7: web2py gui

B PROJECT LINKS
http://www.web2py.com/
https://www.isi.deterlab.net/index.php3
https://ucdavis.edu/

http://nob.cs.ucdavis.edu/classes/ecs235a-2021-04/
https://github.com/y76/ecs235a/
https://curl.se/

REFERENCES
[1] Overleaf Guide to LATEX

https://www.overleaf.com/learn/latex/Tutorials

[2] Wikibooks LATEX Guide
https://en.wikibooks.org/wiki/LaTeX

[3] Honey Tokens and honeypots for web ID and IH
Rich Graves

[4] Honeypots: Concepts, Approaches, and Challenges
Iyatiti Mokube, Michele Adams

[5] How to Mock a Bear: Honeypot, Honeynet, Honeywall Honeytoken: A Survey
Paul Lackner

[6] Honeypot, Honeynet, Honeytoken: Terminological issues
Fabien Pouget, Marc Dacier Hervé Debar

[7] Honeytokens As Active Defense
Robert Petrunić

[8] - A Journey Into Deception Based Security - All about Honeypots Honeytokens
https://www.youtube.com/watch?v=u6nXOGkRXOw

[9] DETERLab
https://www.isi.deterlab.net/index.php3

[10] The State of Honeypots: Understanding the Use of Honey Technologies Today
Andrea Dominguez

[11] cURL
https://curl.se/

http://www.web2py.com/
https://www.isi.deterlab.net/index.php3
https://ucdavis.edu/
http://nob.cs.ucdavis.edu/classes/ecs235a-2021-04/
https://github.com/y76/ecs235a/
https://curl.se/
https://www.isi.deterlab.net/index.php3
https://curl.se/

	Abstract
	1 Introduction
	1.1 Why Honey Tokens?

	2 Background
	2.1 Prior Research
	2.2 Zones
	2.3 web2py
	2.4 DETERLab
	2.5 PythonAnywhere
	2.6 Campus Information Security Office
	2.7 Struggles along the way

	3 Methodology and Implementation
	3.1 Logging
	3.2 Canary-based Parameters
	3.3 Robots.txt
	3.4 Storing on the file system
	3.5 SQL Injection
	3.6 Bogus Login Information

	4 outcomes
	4.1 Future Work

	Acknowledgments
	A Instructions for running (locally MacOS)
	B Project Links
	References

